Multi-response Optimization of Grooved Circular Tubes Filled with Polyurethane Foam as Energy Absorber

Authors

  • Ali Jahan Department of Industrial Engineering, Faculty of Engineering, Semnan Brach, Islamic Azad University, Semnan, Iran
  • Mohammad Javad Rezvani Department of Mechanical Engineering, Faculty of Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran.
  • Shima Shahravi Faculty of Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran.
Abstract:

The main objective of this research is to improvethe design and performance of the polyurethane foam-filled thin-walled aluminum grooved circular tubes using multi-response optimization (MRO) technique. The tubes are shaped with the inner and the outer circular grooves at different positions along the axis. For this aim, several numerical simulations using ABAQUS finite element explicit code are performed to study the energy absorption of these structures. The effects of the grooves distance, tube diameter, grooves depth, foam density, and tube thickness are investigated onthecrashworthiness parameters of grooved circular tubes. Finite-element analysis is performed along the lines defined by design of experiments (DOE) technique at different combinations of the design parameters. The MRO is carried out using the mathematical models obtained from response surface methodology (RSM) for two crashworthiness parameters termed as the specific energy absorption (SEA) and the crushing force efficiency (CFE). Finally, by analyzing all the design criteria including theabsorbed energy of tube, themass of tube, the mean crushing load, and the maximum crushing load, the optimal density of polyurethane foam and geometric parameters were obtained through both multi-objective optimization process and Pareto diagram. A comparison of the obtained results indicates the significance of grooves distance and the inner diameter of thetube as the most influential parameters.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Multi-objective Crashworthiness Optimization of the Aluminum Foam-filled Tubes

In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimization of the automotive energy absorbing components. In this paper, axial impact crushing behavior of the aluminum foam-filled thin-walled tubes are studied by the finite element method using commercial software ABAQUS. Comparison of the...

full text

multi-objective crashworthiness optimization of the aluminum foam-filled tubes

in order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimization of the automotive energy absorbing components. in this paper, axial impact crushing behavior of the aluminum foam-filled thin-walled tubes are studied by the finite element method using commercial software abaqus. comparison of the...

full text

Multi-objective Optimization of Crashworthiness of Cylindrical Tubes as Energy Absorbers

In this article, the multi-objective optimization of cylindrical aluminum tubes under axial impact load is presented.The absorbed energy and the specific absorbed energy (SEA) are considered as objective functions while the maximum crush load should not exceed allowable limit. The geometric dimensions of tubes including diameter, length and thickness are chosen as design variables. The Non-domi...

full text

Experimental and Numerical Simulation Investigation on Crushing Response of Foam-Filled Conical Tubes Stiffened with Annular Rings

In this paper, crashworthiness characteristics of conical steel tubes stiffened by annular rings and rigid polyurethane foam are investigated. For this purpose, wide circumferential rings are created from the outer surface of the conical tube at some determined areas along tube length. In fact, this method divides a long conical tube into several tubes of shorter length. When this structure is ...

full text

Effect of adhesive on the strengthening of aluminum foam-filled circular tubes

Studies of the crushing behavior of closed-cell, aluminum foam-filled aluminum and steel tubes have shown an interaction effect between tube wall and foam filler [1, 2, 3]. The crushing loads of foam-filled tubes are, therefore, found to be higher than the sum of the crushing loads of foam (alone) and tube (alone) mainly due to this effect. Santosa et al. [1], based on FEM results, proposed the...

full text

Endurance of Damping Properties of Foam-Filled Tubes

The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of str...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 1

pages  133- 149

publication date 2019-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023